Emergency Service 24/7

Fire - Water - Mold Damage - Cleanup & Restoration

Call 866-334-9111

Tampa (813) 379-9833

Miami (305) 374-8300

Melbourne (321) 255-0160

Groundwater

by Olga Loreto Olga Loreto No Comments

Groundwater Remediation Techniques

Groundwater remediation techniques span biological, chemical, and physical treatment technologies. Most groundwater treatment techniques utilize a combination of technologies. Some of the biological treatment techniques include bioaugmentationbioventingbiospargingbioslurping, and phytoremediation. Some chemical treatment techniques include ozone and oxygen gas injectionchemical precipitationmembrane separationion exchangecarbon absorptionaqueous chemical oxidation, and surfactant enhanced recovery. Some chemical techniques may be implemented using nanomaterials. Physical treatment techniques include, but are not limited to, pump and treatair sparging, and dual phase extraction.

Biological treatment technologies

Bioaugmentation

If a treatability study shows no degradation (or an extended lab period before significant degradation is achieved) in contamination contained in the groundwater, then inoculation with strains known to be capable of degrading the contaminants may be helpful. This process increases the reactive enzyme concentration within the bioremediation system and subsequently may increase contaminant degradation rates over the nonaugmented rates, at least initially after inoculation.

Bioventing

Bioventing is an on-site remediation technology that uses microorganisms to biodegrade organic constituents in the groundwater system. Bioventing enhances the activity of indigenous bacteria and archaea and stimulates the natural in situ biodegradation of hydrocarbons by inducing air or oxygen flow into the unsaturated zone and, if necessary, by adding nutrients. During bioventing, oxygen may be supplied through direct air injection into residual contamination in soil. Bioventing primarily assists in the degradation of adsorbed fuel residuals but also assists in the degradation of volatile organic compounds (VOCs) as vapors move slowly through biologically active soil.

Biosparging

Biosparging is an in situ remediation technology that uses indigenous microorganisms to biodegrade organic constituents in the saturated zone. In biosparging, air (or oxygen) and nutrients (if needed) are injected into the saturated zone to increase the biological activity of the indigenous microorganisms. Biosparging can be used to reduce concentrations of petroleum constituents that are dissolved in groundwater, adsorbed to soil below the water table, and within the capillary fringe.

Bioslurping

Bioslurping combines elements of bioventing and vacuum-enhanced pumping of free-product that is lighter than water (light non-aqueous phase liquid or LNAPL) to recover free-product from the groundwater and soil and to bioremediate soils. The bioslurper system uses a “slurp” tube that extends into the free-product layer. Much like a straw in a glass draws liquid, the pump draws liquid (including free-product) and soil gas up the tube in the same process stream. Pumping lifts LNAPLs, such as oil, off the top of the water table and from the capillary fringe (i.e., an area just above the saturated zone, where water is held in place by capillary forces). The LNAPL is brought to the surface, where it is separated from water and air. The biological processes in the term “bioslurping” refer to aerobic biological degradation of the hydrocarbons when air is introduced into the unsaturated zone contaminated soil.

Phytoremediation

In the phytoremediation process, certain plants and trees are planted, whose roots absorb contaminants from groundwater over time. This process can be carried out in areas where the roots can tap the groundwater. A few examples of plants that are used in this process are Chinese Ladder fern Pteris vittata, also known as the brake fern, which is a highly efficient accumulator of arsenic. Genetically altered cottonwood trees are good absorbers of mercury and transgenic Indian mustard plants soak up selenium well.

by Olga Loreto Olga Loreto No Comments

Removing Pollution or Contaminants from Groundwater

Groundwater remediation is the process that is used to treat polluted groundwater by removing the pollutants or converting them into harmless products. Groundwater is water present below the ground surface that saturates the pore space in the subsurface. Globally, between 25 percent and 40 percent of the world’s drinking water is drawn from boreholes and dug wells. Groundwater is also used by farmers to irrigate crops and by industries to produce everyday goods. Most groundwater is clean, but groundwater can become polluted, or contaminated as a result of human activities or as a result of natural conditions.

The many and diverse activities of humans produce innumerable waste materials and by-products. Historically, the disposal of such waste has not been subject to many regulatory controls. Consequently, waste materials have often been disposed of or stored on land surfaces where they percolate into the underlying groundwater. As a result, the contaminated groundwater is unsuitable for use.

Current practices can still impact groundwater, such as the over-application of fertilizer or pesticidesspills from industrial operations, infiltration from urban runoff, and leaking from landfills. Using contaminated groundwater causes hazards to public health through poisoning or the spread of disease, and the practice of groundwater remediation has been developed to address these issues. Contaminants found in groundwater cover a broad range of physical, inorganic chemical, organic chemical, bacteriological, and radioactive parameters. Pollutants and contaminants can be removed from groundwater by applying various techniques, thereby bringing the water to a standard that is commensurate with various intended uses.

Removing pollution or contaminants from groundwater, surface water, or contaminated soil is what environmental remediation is all about. But to get the job done successfully, you’ll need to first understand the different cleanup methods and how they work. Here is a list of six proven methods:

1) Ground Water Pumping and Treatment: This method involves the extracting groundwater with a vacuum pump and then separating contaminants with techniques like carbon adsorption, biological treatment, and air stripping

2) Waste Water Treatment: This method removes contaminants from wastewater with techniques such as physical separation, chemical treatment, and biological treatment.

3) Bio-remediation: This method is a natural bio-degradation of contaminants by micro-organisms, which can be enhanced through the addition of nutrients or cultivation.

4) Incineration: This method uses extremely high temperatures to destroy organic compounds contained within the hazardous waste.

5) Thermal Desorption: This method utilizes high temperatures to heat contaminated soil, vaporizing volatile and semi-volatile organics (like mercury hydrocarbon), which are then either collected or treated with an afterburner.

6) Removal and Disposal: This method involves the physical removal of contaminated equipment, soil, water, sludge and/or tanks and transporting it to an approved hazardous waste disposal facility. If it turns out you need to go this route, Hazardous Waste Experts can help you with this. We’re experts at environmental remediation and hazardous and non-hazardous regulated waste disposal.

Top